Exclusives
FacebookTwitterLinkedInGoogle+RSS Feed
Fire EMSEMS TodayEMS Insider

New Computer Architecture Aids Emergency Response

PRINCETON, N.J. -- Princeton researchers have invented a computer architecture that enables the secure transmission of crucial rescue information to first responders during events such as natural disasters, fires or terrorist attacks. Electrical engineering professor Ruby Lee said the new architecture allows for what she describes as transient trust -- the ability to transmit sensitive information to parties on an as-needed basis so that it cannot be intercepted by others and so that access stops as soon as the recipient no longer has a legitimate need for it.

A paper describing the new architecture by Lee and her graduate student Jeffrey Dwoskin will be presented Wed., Oct. 31, at the ACM Computer and Communications Security conference in Alexandria, Va.

Data provided on a transient-trust basis might include floor plans of a building, medical information about occupants, or satellite maps of a given area.

The paper describes SP (Secret Protection) computer architecture, which relies on two new elements that are embedded in the hardware of an electronic device: a device root key and a storage root hash.

A trusted authority such as a municipal Fire Department would initialize a device -- for example, a PDA used by a firefighter - with these features so that during an emergency a firefighter could be given access to relevant floor plans, security codes or other essential information. Once the emergency was over, the access to this sensitive information would end.

This new research emerged from the Princeton Architecture Lab for Multimedia and Security (PALMS) led by Lee, the Forrest G. Hamrick Professor of Engineering. The lab s major focus is clean-slate computer architecture design. As chief computer architect at Hewlett-Packard, Lee was a key figure in a revolution in computer architecture that swept through the industry in the 1980s. Since coming to Princeton, Lee has been working to revolutionize computer architecture again.

Computers were not originally designed with security as a goal, said Lee. I m trying to rethink the design of computers so they can be trustworthy while at the same time retain all their original design goals, such as high performance, low cost and energy efficiency.

Lee aims to build fundamental security features directly into the hardware of a device, whether it is a personal computer, cell phone or PDA. Her researchers are working to build trust anchors into computer hardware to which different software can be tethered, to provide important security coverage.

Lee said that many researchers do not think it is possible to build security features into computer hardware without slowing the computer down or causing it to consume lots of power. However, research done by her lab demonstrates that this is not the case.

Our research shows that these hardware roots of trust are actually quite deployable on consumer devices like desktop computers or PDAs, and also in sensor networks and larger servers, said Lee. The work is part of the SecureCore multi-university research project, funded by the NSF Cybertrust program and DARPA, which aims to integrate essential security into the hardware, software and networking at the core of commodity computing and communications devices.

In addition to trust anchors for software, Lee is also researching hardware safety nets to defend against software vulnerabilities that remote attackers exploit to gain entry into a computer. The ultimate goal is to inoculate individual computers and electronic devices such as cell phones against threats like viruses, worms and bots so that they cannot infect, or be used to attack, other machines.

Lee s students study all aspects of building more secure microprocessors and hardware. In June, at the IEEE Symposium on Computer Arithmetic, Lee and Yedidya Hilewitz, a graduate student at Princeton, published a paper which proposes a revolutionary design of a fundamental functional unit of microprocessors that greatly expands a computer s ability to perform advanced bit manipulation operations, which are very useful for fast cryptography and cryptanalysis, as well as for many other applications.

Lee is also studying computer architecture that prevents leakage of information through covert channels and side channels. At the International Symposium on Computer Architecture in June, Zhenghong Wang, one of Lee s graduate students, presented a paper describing a hardware approach to preventing so-called software side-channel attacks during which attackers exploit the cache memories that are shared between computer programs to leak secret cryptographic keys.

In September, at the Cryptographic Hardware and Embedded Systems conference, Lee s researchers, Reouven Elbaz and David Champagne, presented a hardware memory integrity solution to rebuff memory replay attacks, where attackers try to trick a computer into accepting material as still legitimate even though it has already been officially deleted.

Lee was a member of the Committee on Improving Cybersecurity Research in the United States, a group charged by the National Research Council with outlining a strategy for cybersecurity research in the 21st century. The committee recently issued a report, Toward a Safer and More Secure Cyberspace, published by the National Academy of Sciences. Section 4.1 of the report, which can be found at the url below, describes the earlier user-centric version of the Secret Protection architecture - rather than the authority-centric version described above for emergency response scenarios. Both were developed by Lee s lab at Princeton.

RELATED ARTICLES

Understanding Why EMS Systems Fail

Learn to recognize trigger points that could ruin your system.

West River Ambulance Receives New Rig

West River Ambulance in Hettinger, ND recently received a much-needed upgrade from their 1992 rig. A 2014 Ford/AEV Type III Custom Conversion rig with a 6.8 ...

Unlikely Pairing Leads to Health Care Education Wins

The University of Texas Health Science Center at Houston (UTHealth) School of Nursing and Harris County Emergency Corps (HCEC) have formed an unlikely pairin...

Know When and How Your Patient Can Legally Refuse Care

Refusal of care straddles the intersection of ethical, legal and scientific domains of prehospital practice.

Reflecting on 35 Years of Innovation in JEMS

Take a walk through the last 35 years of EMS in JEMS.

Readers Sound Off About Glove Use After Patient Care

How often are you susceptible to potentially unclean surfaces?

Features by Topic

JEMS Connect

CURRENT DISCUSSIONS

 
 

EMS BLOGS

Blogger Browser

Today's Featured Posts

Featured Careers